

LONG CHAIN POLYAMIDE RESIN

Zytel® LCPA long chain polyamide resins provide an innovative and growing portfolio of flexible polymers with excellent thermal, chemical, and hydrolysis resistance. The diverse selection of Zytel® LCPA grades is targeted for a range of performance characteristics, balancing temperature resistance, flexibility and low permeation.

Zytel® RS LCPA resins contain between 20% and 100% renewably sourced material (by weight) derived from castor beans.

Zytel® RS LC3090 NC010 is a renewable sourced polyamide 610 containing a minimum of 60% renewably sourced ingredient by weight. It is an unreinforced, high viscosity grade, developed for extrusion applications.

Product information

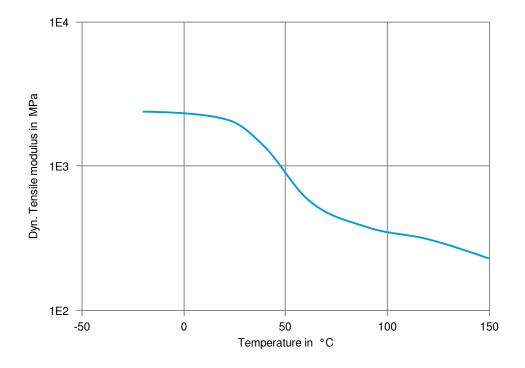
Resin Identification Part Marking Code ISO designation	PA610 >PA610< ISO 16396-PA610,,M1G1N,S18-020		ISO 1043 ISO 11469
Rheological properties	dry/cond.		
Viscosity number Intrinsic viscosity	170 ^[1] /* 1.55	cm ³ /g	ISO 307, 1628 ISO 307, 1628
Moulding shrinkage, parallel Moulding shrinkage, normal	1.2/- 1.2/-	% %	ISO 294-4, 2577 ISO 294-4, 2577
[1]: Sulfuric acid 96%	1.2/-	70	130 294-4, 2377
Typical mechanical properties	dry/cond.		
Tensile modulus Flexural modulus	2300/1200 1900/-	MPa MPa	ISO 527-1/-2 ISO 178
Flexural strength	86/-	MPa	ISO 178
Charpy impact strength, 23°C	N/-	kJ/m ²	ISO 179/1eU
Charpy notched impact strength, 23°C Poisson's ratio	5.6/- 0.39/0.44	kJ/m²	ISO 179/1eA
Thermal properties	dry/cond.		
Melting temperature, 10 °C/min	225/*	°C	ISO 11357-1/-3
Glass transition temperature, 10°C/min	60/50	°C °C	ISO 11357-1/-3
Temperature of deflection under load, 1.8 MPa Temperature of deflection under load, 0.45 MPa	54/* 151/*	°C	ISO 75-1/-2 ISO 75-1/-2
Flammability			
FMVSS Class	В		ISO 3795 (FMVSS 302)
Burning rate, Thickness 1 mm	<80	mm/min	ISO 3795 (FMVSS 302)
Physical/Other properties	dry/cond.		
Humidity absorption, 2mm	1.4/*	%	Sim. to ISO 62
Water absorption, 2mm	3.3/*	%	Sim. to ISO 62
Water absorption, Immersion 24h Density	0.58/* 1080/-	% kg/m³	Sim. to ISO 62 ISO 1183

Printed: 2025-03-25

LONG CHAIN POLYAMIDE RESIN

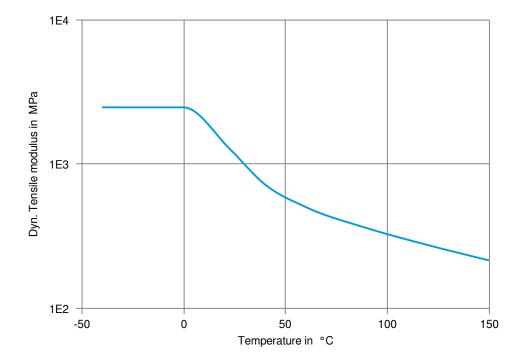
Extrusion

Drying Temperature	75 - 80 °C
Drying Time, Dehumidified Dryer	3-4 h
Processing Moisture Content	≤0.06 %
Melt Temperature Optimum	245 °C
Melt Temperature Range	240 - 255 °C

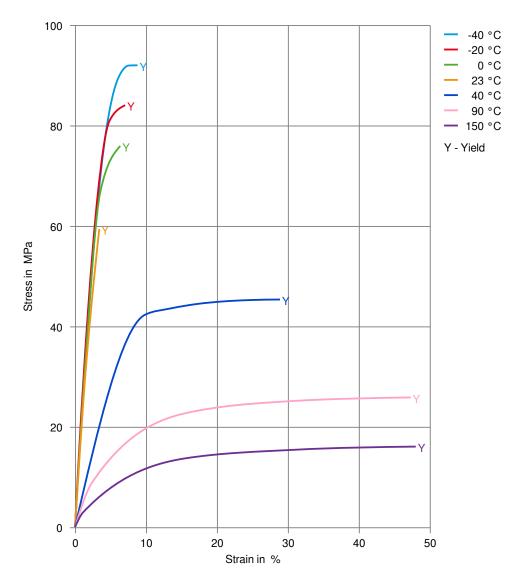

Characteristics

Processing	Injection Moulding, Extrusion, Other Extrusion
Delivery form	Pellets
Sustainability	Bio-Content

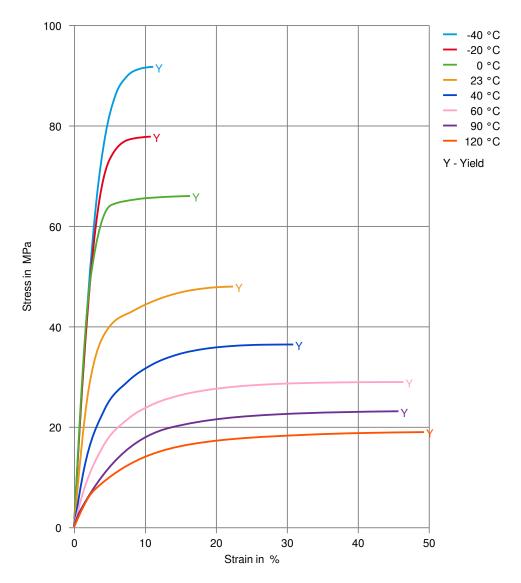
Dynamic Tensile modulus-temperature (dry)


LONG CHAIN POLYAMIDE RESIN

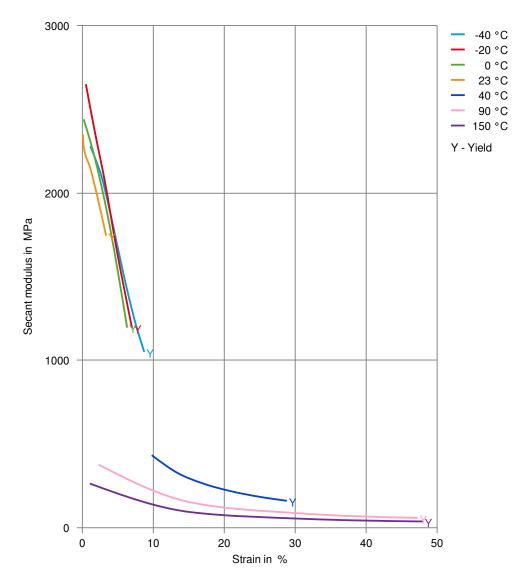
LONG CHAIN POLYAMIDE RESIN


Dynamic Tensile modulus-temperature (cond.)

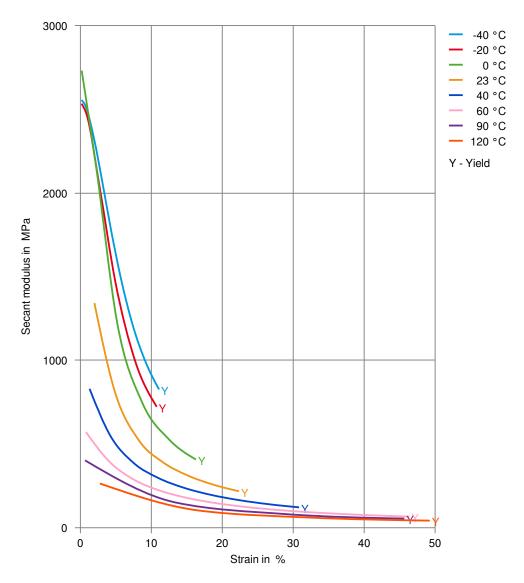
LONG CHAIN POLYAMIDE RESIN


Stress-strain (dry)

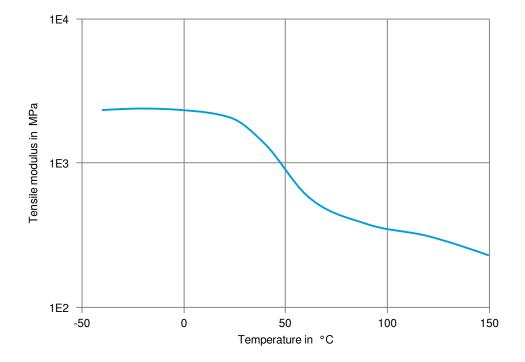
LONG CHAIN POLYAMIDE RESIN


Stress-strain (cond.)

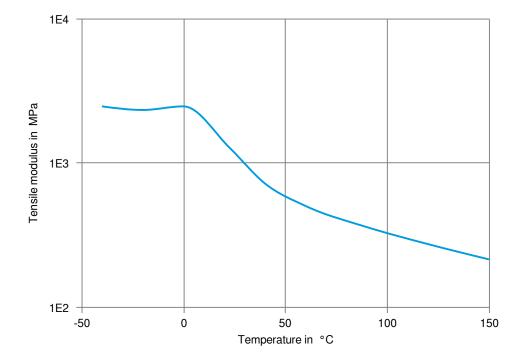
LONG CHAIN POLYAMIDE RESIN


Secant modulus-strain (dry)

LONG CHAIN POLYAMIDE RESIN


Secant modulus-strain (cond.)

LONG CHAIN POLYAMIDE RESIN


Tensile modulus-temperature (dry)

LONG CHAIN POLYAMIDE RESIN

Tensile modulus-temperature (cond.)

Printed: 2025-03-25

Page: 10 of 10

Revised: 2024-12-09 Source: Celanese Materials Database

NOTICE TO USERS: Values shown are based on testing of laboratory test specimens and represent data that fall within the standard range of properties for natural material. These values alone do not represent a sufficient basis for any part design and are not intended for use in establishing maximum, minimum, or ranges of values for specification purposes. Colourants or other additives may cause significant variations in data values. Properties of moulded parts can be influenced by a wide variety of factors including, but not limited to, material selection, additives, part design not intended for use in medical or dental implants. Regardless of any such product designation, any determination of the suitability of a particular material and part design for any use contemplated by the users and the manner of such use is the sole responsibility of the users, who must assure themselves that the material as subsequently processed meets the needs of their particular product or use. To the best of our knowledge, the information contained in this publication is accurate; however, we do not assume any liability whatsoever for the accuracy and completeness of such information. The information contained in this publication as a promise or guarantee of specific properties of our groucts. It is the sole responsibility of the users to investigate whether any existing patents are infringed by the use of the materials mentioned in this publication. Moreover, there is a need to reduce human exposure to many materials to the lowest practical limits in view of possible adverse effects. To the extent that any hazards may have been mentioned in this publication, we neither suggest nor guarantee that such hazards are the only ones that exist. We recommend that persons intending to rely on any recommendation or to use any equipment, processing technique or material mentioned in this publication should satisfy themselves that they can meet all applicable safety and health standards. We strongly recommend that users seek and adhere to the

© 2025 Celanese or its affiliates. All rights reserved. Celanese®, registered C-ball design and all other trademarks identified herein with ®, TM, SM, unless otherwise noted, are trademarks of Celanese or its affiliates. Fortron is a registered trademark of Fortron Industries LLC. KEPITAL is a registered trademark of Korea Engineering Plastics Company, Ltd.