

#### HIGH PERFORMANCE POLYAMIDE RESIN

Zytel® HTN high performance polyamide resins feature high retention of properties upon exposure to elevated temperature, to high moisture, and to harsh chemical environments. Polymer families and grades of Zytel® HTN are tailored to optimize performance as well as processability.

Typical applications with Zytel® HTN include demanding applications in the automotive, electrical and electronics, domestic appliances, and construction industries.

Zytel® HTN53G60LRHF BK083 is a 60% glass reinforced, lubricated, high performance polyamide resin with improved flow. It was developed for structural applications requiring excellent surface appearance using water-heated molds.

#### Product information

| Froductilionnation                             |                 |                               |                      |
|------------------------------------------------|-----------------|-------------------------------|----------------------|
| Resin Identification                           | PA-GF60         |                               | ISO 1043             |
| Part Marking Code                              | >PA-GF60<       |                               | ISO 11469            |
| Part Marking Code                              | >PA-GF60<       |                               | SAE J1344            |
| ISO designation                                |                 | F60,M1CGHR,S10-220            |                      |
| 100 designation                                | 100 10030-1 A,G | 1 00,111 1 001 11 1,0 10 -220 |                      |
| Rheological properties                         | dry/cond.       |                               |                      |
| Moulding shrinkage, parallel                   | 0.1/-           | %                             | ISO 294-4, 2577      |
| Moulding shrinkage, normal                     | 0.5/-           | %                             | ISO 294-4, 2577      |
|                                                |                 |                               |                      |
| Typical mechanical properties                  | dry/cond.       |                               |                      |
| Tensile modulus                                | 21000/20000     | MPa                           | ISO 527-1/-2         |
| Tensile stress at break, 5mm/min               | 265/225         | MPa                           | ISO 527-1/-2         |
| Tensile strain at break, 5mm/min               | 2.2/2.6         | %                             | ISO 527-1/-2         |
| Flexural modulus                               | 19100/-         | MPa                           | ISO 178              |
| Flexural strength                              | 400/-           | MPa                           | ISO 178              |
| Charpy impact strength, 23°C                   | 90/90           | kJ/m²                         | ISO 179/1eU          |
| Charpy notched impact strength, 23°C           | 16/15           | kJ/m²                         | ISO 179/1eA          |
| Charpy notched impact strength, -30°C          | 17/15           | kJ/m²                         | ISO 179/1eA          |
| Poisson's ratio                                | 0.33/0.33       |                               |                      |
| Thermal properties                             | dry/cond.       |                               |                      |
| Melting temperature, 10°C/min                  | 260/*           | °C                            | ISO 11357-1/-3       |
| Melting temperature, first heat                | 260/*           | °C                            | ISO 11357-1/-3       |
| Glass transition temperature, 10°C/min         | 85/45           | °C                            | ISO 11357-1/-3       |
| Temperature of deflection under load, 1.8 MPa  | 245/*           | °C                            | ISO 75-1/-2          |
| Temperature of deflection under load, 0.45 MPa | 255/*           | °C                            | ISO 75-1/-2          |
|                                                |                 |                               |                      |
| Flammability                                   | dry/cond.       |                               |                      |
| Burning Behav. at 1.5mm nom. thickn.           | HB/*            | class                         | IEC 60695-11-10      |
| Thickness tested                               | 1.5/*           | mm                            | IEC 60695-11-10      |
| UL recognition                                 | yes/*           |                               | UL 94                |
| FMVSS Class                                    | В               |                               | ISO 3795 (FMVSS 302) |
| Burning rate, Thickness 1 mm                   | <80             | mm/min                        | ISO 3795 (FMVSS 302) |
|                                                |                 |                               |                      |

Printed: 2025-03-27 Page: 1 of 6



### HIGH PERFORMANCE POLYAMIDE RESIN

#### Physical/Other properties

dry/cond.

| Humidity absorption, 2mm | 0.95/* | %     | Sim. to ISO 62 |
|--------------------------|--------|-------|----------------|
| Water absorption, 2mm    | 3.4/*  | %     | Sim. to ISO 62 |
| Density                  | 1720/- | kg/m³ | ISO 1183       |

#### Injection

| Drying Recommended              | yes   |    |
|---------------------------------|-------|----|
| Drying Temperature              | 100   | °C |
| Drying Time, Dehumidified Dryer | 6 - 8 | h  |
| Processing Moisture Content     | ≤0.1  | %  |
| Melt Temperature Optimum        | 290   | °C |
| Min. melt temperature           | 280   | °C |
| Max. melt temperature           | 300   | °C |
| Mold Temperature Optimum        | 100   | °C |
| Min. mould temperature          | 90    | °C |
| Max. mould temperature          | 110   | °C |
| Ejection temperature            | 206   | °C |

#### Characteristics

Processing Injection Moulding

Delivery form Pellets

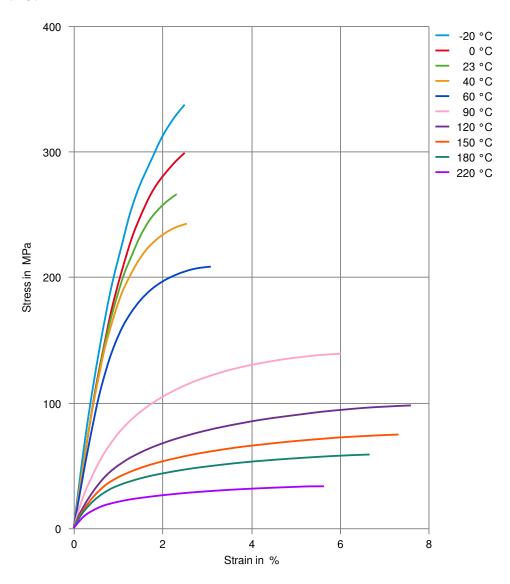
Additives Release agent

Special characteristics Heat stabilised or stable to heat, Laser Markable

#### Additional information

Injection molding During molding, use proper protective equipment and adequate ventilation. Avoid

exposure to fumes and limit the hold up time and temperature of the resin in the

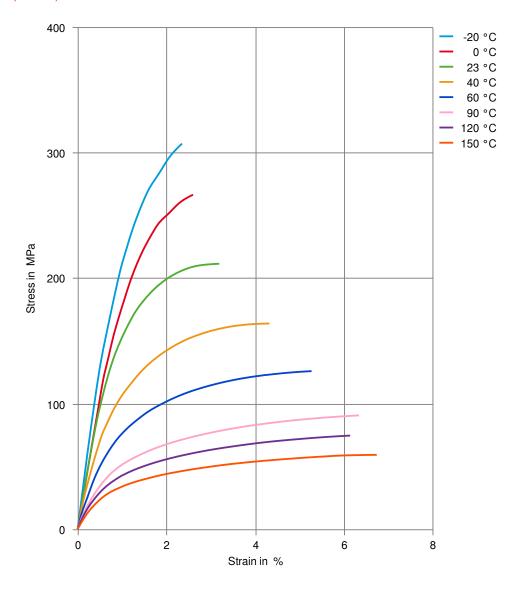

machine. Purge degraded resin carefully with HDPE.

Printed: 2025-03-27 Page: 2 of 6



## HIGH PERFORMANCE POLYAMIDE RESIN

#### Stress-strain (dry)

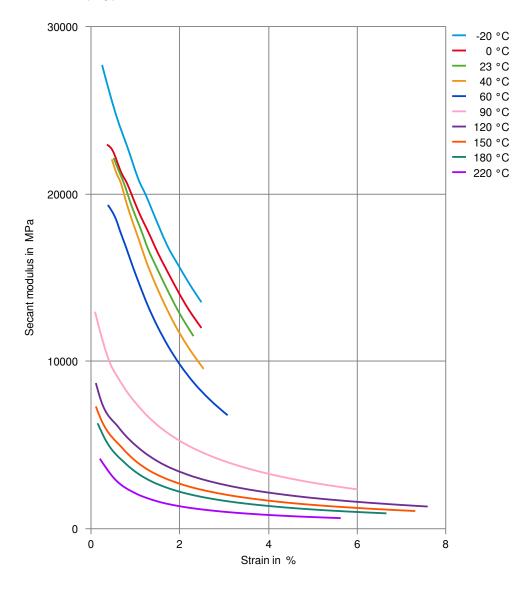



Printed: 2025-03-27 Page: 3 of 6



## HIGH PERFORMANCE POLYAMIDE RESIN

#### Stress-strain (cond.)

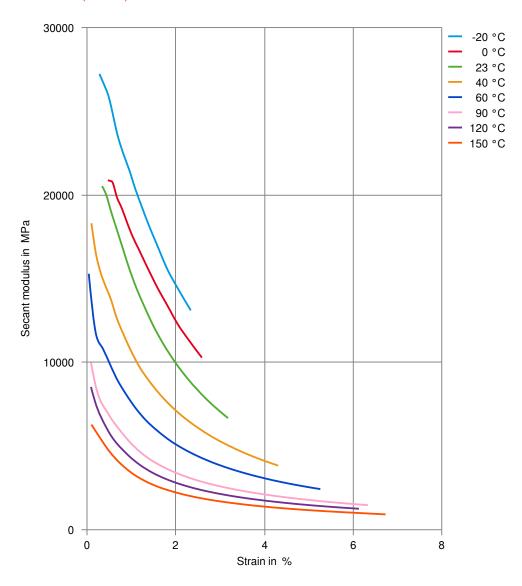



Printed: 2025-03-27 Page: 4 of 6



## HIGH PERFORMANCE POLYAMIDE RESIN

#### Secant modulus-strain (dry)




Printed: 2025-03-27 Page: 5 of 6



#### HIGH PERFORMANCE POLYAMIDE RESIN

#### Secant modulus-strain (cond.)



Printed: 2025-03-27 Page: 6 of 6

Revised: 2024-07-04 Source: Celanese Materials Database

NOTICE TO USERS: Values shown are based on testing of laboratory test specimens and represent data that fall within the standard range of properties for natural material. These values alone do not represent a sufficient basis for any part design and are not intended for use in establishing maximum, minimum, or ranges of values for specification purposes. Colourants or other additives may cause significant variations in data values. Properties of moulded parts can be influenced by a wide variety of factors including, but not limited to, material selection, additives, part design conditions and environmental exposure. Other than those products expressly identified as medical grade (including by MT® product designation or otherwise), Celanese's products are not intended for use in medical or dental implants. Regardless of any such product designation, any determination of the suitability of a particular material and part design for any use contemplated by the users and the manner of such use is the sole responsibility of the users, who must assure themselves that the material as subsequently processed meets the needs of their particular product or use. To the best of our knowledge, the information contained in this publication is accurate; however, we do not assume any liability whatsoever for the accuracy and completeness of such information. The information contained in this publication should not be construed as a promise or guarantee of specific properties of our products. It is the sole responsibility of the users to investigate whether any existing patents are infringed by the use of the materials mentioned in this publication, we neither suggest nor guarantee that such hazards are the only ones that exist. We recommend that persons intending to rely on any recommendation or to use any equipment, processing technique or material mentioned in this publication should satisfy themselves that they can meet all applicable safety and health standards. We strongly recommend that users seek and adhere to the manufac

© 2025 Celanese or its affiliates. All rights reserved. Celanese®, registered C-ball design and all other trademarks identified herein with ®, TM, SM, unless otherwise noted, are trademarks of Celanese or its affiliates. Fortron is a registered trademark of Fortron Industries LLC. KEPITAL is a registered trademark of Korea Engineering Plastics Company, Ltd.