Vydyne® 22HSPCN NT0856 polyamide 66

Vydyne 22HSPCN NT0856 is a general-purpose, unfilled, lubricated, heat stabilized PA66 resin. Designed principally for injection-molding fabrication, this product offers a combination of engineering properties characterized by high strength; rigidity; good toughness; high melt point; good surface lubricity; abrasion resistance; and resistance to many chemicals, machine and motor oils, solvents and gasoline. this product is designed to resist thermal degradation when exposed to warm climates.

General					
Additive	Heat Stabilizer	• Lubri	cant	• F	Release agent
Features	 Abrasion Resistance 	Chen	nical Resistant	• (Gasoline Resistant
	 General Purpose 	• Good	Heat Resistance	• (Good Stiffness
	 Good Strength 	• Good	Tensile Strength	• [_ubricated
	 Thermal Stability 				
Appearance	 Natural Color 				
Forms	Pellets				
Processing Method	 Injection Molding 				
Physical		dry	cond	Unit	Test Standard

Physical	dry	cond.	Unit	Test Standard
Density	1.13	-	g/cm³	ISO 1183
Molding Shrinkage				ISO 294-4
Across Flow : 23°C, 2.00 mm	1.7	*	%	
Flow : 23°C, 2.00 mm	1.6	*	%	
Water Absorption				ISO 62
23°C, 24 hr	1.7	*	%	
Equilibrium, 23°C, 50% RH	2.9	*	%	

Mechanical	dry	cond.	Unit	Test Standard
Tensile Modulus (23°C)	3300	1200	MPa	ISO 527-2
Tensile Stress (Yield, 23°C)	87	52	MPa	ISO 527-2
Tensile Stress (Break, 23°C)	55	46	MPa	ISO 527-2
Tensile Strain (Yield, 23°C)	4.9	22	%	ISO 527-2
Tensile Strain (Break, 23°C)	22	>50	%	ISO 527-2
Flexural Modulus (23°C)	3000	1000	MPa	ISO 178
Flexural Strength (23°C)	104	31	MPa	ISO 178
Poisson's Ratio (23°C)	0.4			ISO 527-2

©2025 Ascend Performance Materials Operations. The Ascend Performance Materials name, brands, marks and logos (e.g., those identified with ®, ™, or ℠) are owned by Ascend Performance Materials Operations, unless otherwise noted.

Vydyne® 22HSPCN NT0856

Impact	dry	cond.	Unit	Test Standard
Charpy Notched Impact Strength				ISO 179/1eA
+23°C	4.6	18	kJ/m²	
-30°C	4.9	4.7	kJ/m²	
-40°C	4.1	4	kJ/m²	
Charpy Unnotched Impact Strength				ISO 179/1eU
+23°C	Ν	Ν	kJ/m²	
-30°C	Ν	Ν	kJ/m²	
-40°C	N	N	kJ/m²	
Notched Izod Impact Strength				ISO 180/1A
+23°C	4.8	19	kJ/m²	
-30°C	4.7	5.2	kJ/m²	
-40°C	4.5	5.1	kJ/m²	
Thermal	dry	cond.	Unit	Test Standard
Heat Deflection Temperature				ISO 75-2/A
1.80 MPa, Unannealed	67	-	°C	
0.45 MPa, Unannealed	199	-	°C	
Melting Temperature	260	*	°C	ISO 11357-3
CLTE				ISO 11359-2
Flow : 23 to 55°C, 2.00 mm	112	*	E-6/K	
Transverse : 23 to 55°C, 2.00 mm	103	*	E-6/K	
Electrical	dry	cond.	Unit	Test Standard
Volume Resistivity (1.00 mm)	2.44E15	4.19E10	Ohm*m	IEC 60093
Dielectric Strength (1.00 mm)	30	23	kV/mm	IEC 60243
Injection	Value		Unit	
Drying Temperature	70		°C	
Drying Time	1 - 3		h	
Rear Temperature	260 - 280		°C	
Middle Temperature	270 - 285		°C	
Front Temperature	280 - 290		°C	
Nozzle temperature	280 - 300		°C	
Processing (Melt) Temperature	285 - 300		°C	
Mold Temperature	65 - 95		°C	

©2025 Ascend Performance Materials Operations. The Ascend Performance Materials name, brands, marks and logos (e.g., those identified with ®, ™, or ℠) are owned by Ascend Performance Materials Operations, unless otherwise noted.

Vydyne® 22HSPCN NT0856 polyamide 66

North America +1 888 927 2363 Europe +32 10 608 600 Asia +86 21 2315 0888

Disclaimer

NOTICE: Although the information and recommendations set forth herein (hereinafter " information") are presented in good faith and believed to be correct as of the date hereof, Ascend Performance Materials Operations makes no representation or warranties as to the completeness of accuracy thereof.

Information is supplied upon the condition that the persons receiving same will make their own determination as to its suitability for their purpose prior to use. In no event will Ascend Performance Materials Operations be responsible for damages of any nature whatsoever resulting in the use of or reliance upon information or the products to which information refers. Nothing contained herein is to be construed as a recommendation to use any product, equipment or formulation in conflict with any patent, and Ascend Performance Materials Operations makes no representation or warranty, express or implied, that use thereof will not infringe any patent. No representation or warranties, either express or implied, of merchantability fitness for a particular purpose or of any other nature are made hereunder with respect to information or product to which information refers.

CAUTION: Do not use Ascend Performance Materials Operations MED grades in medical applications involving implantation in the human body or contact with internal body fluids or tissues for extended periods of time.

©2025 Ascend Performance Materials Operations. The Ascend Performance Materials name, brands, marks and logos (e.g., those identified with ®, ™, or ℠) are owned by Ascend Performance Materials Operations, unless otherwise noted.